Heat is thermal energy and transfer occurs basically in three modes:

  1. Conduction
  2. Convection
  3. Radiation

Conduction

Heat energy can move through a substance by conduction. Metals are good conductors of heat, but non-metals and gases are usually poor conductors of heat. Poor conductors of heat are called insulators. Heat energy is conducted from the hot end of an object to the cold end.

The electrons in piece of metal can leave their atoms and move about in the metal as free electrons. The parts of the metal atoms left behind are now charged metal ions. The ions are packed closely together and they vibrate continually. The hotter the metal, the more kinetic energy these vibrations have. This kinetic energy is transferred from hot parts of the metal to cooler parts by the free electrons. These move through the structure of the metal, colliding with ions as they go.

Convection

Liquids and gases are fluids. The particles in these fluids can move from place to place. Convection occurs when particles with a lot of heat energy in a liquid or gas move and take the place of particles with less heat energy. Heat energy is transferred from hot places to cooler places by convection.

Liquids and gases expand when they are heated. This is because the particles in liquids and gases move faster when they are heated than they do when they are cold. As a result, the particles take up more volume. This is because the gap between particles widens, while the particles themselves stay the same size.

The liquid or gas in hot areas is less dense than the liquid or gas in cold areas, so it rises into the cold areas. The denser cold liquid or gas falls into the warm areas. In this way, convection currents that transfer heat from place to place are set up.

Radiation

All objects give out and take in thermal radiation, which is also called infrared radiation. The hotter an object is, the more infrared radiation it emits.

Infrared radiation is a type of electromagnetic radiation that involves waves. No particles are involved, unlike in the processes of conduction and convection, so radiation can even work through the vacuum of space. This is why we can still feel the heat of the Sun, although it is 150 million km away from the Earth.

Some surfaces are better than others at reflecting and absorbing infrared radiation.

Please send your inquiry to: [email protected].