
■ Glass duplex-insulated K type thermocouple wires with heat-resistant inorganic coating (K-Hh) I

Duplex-insulated thermocouple wires insulated and sheathed with glass fiber, and coated with heat-resistant inorganic coating to improve heat-resistance and insulation properties. Maximum operating temperature under normal condition is 350°C, and short-time maximum operating temperature under overheating condition is 400°C.

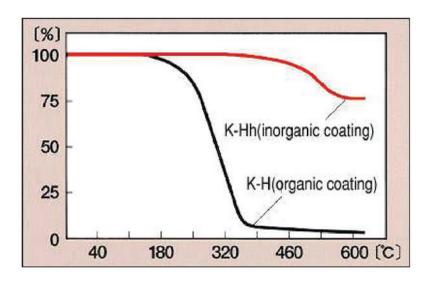
K-Hh is improved version of K-H (glass coated thermocouple wire) with higher heat-resistance and insulationresistance. Color of heat-resistant inorganic coating is natural-colored white. Identification is made by spiraled stripes on the surface appeared after yarning a colored thread, which is described in the Standards Table, together with braiding glass.

Conductor: Thermocouple element wire Insulation: Duplex glass-yarn rolled single braid, or glass roll + heat-resistant inorganic coating Out sheath:Single glass-yarn braid + heat-resistant inorganic coating

Standard type										
Parts No.	Conductor	Insulation		Parts	Sheath	Finished	Conductor	Color		
	OD	Thickness	OD	OD	thickness	OD	resistance	Insulation		Sheath
	mm	mm	mm	mm	mm	mm	Ω/m	+	-	Sileatri
0.32 x1P K-Hh	0.32	0.3	0.92	0.92×1.84	0.25	1.4×2.3	12.1	Natural + Red lines	Natural	Natural + Blue lines
0.65 x1P K-Hh	0.65	0.4	1.45	1.45×2.9	0.25	2.0×3.4	2.95	Natural + Red lines	Natural	Natural + Blue lines
1.0 x1P K-Hh	1.0	0.4	1.8	1.8×3.6	0.25	2.3×4.1	1.25	Natural + Red lines	Natural	Natural + Blue lines

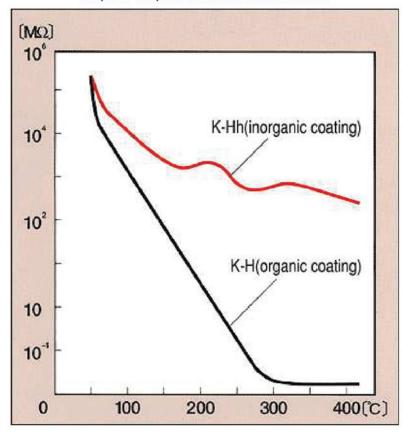
Heat-Resistivity Data of K-Hh

■Heat-resistance property of coating materials


Graph 1: Temperature-Weight Change Rate

Graph 1 shows heat-resistivity of our new coating materials measured by thermogravimetric analysis and compared with a conventional coating material. Pyrolysis begins at 500°C for K-Hh and at 300°C for K-H. The data proves that heat-resistivity of these materials are far more excellent than that of conventional one.

Pyrolysis starting points were determined by tangent method using TGA chart.



■Heat-insulating property

Graph 2: Temperature-Insulation Resistance

Graph 2 shows changes in insulation resistance of our new coating materials under temperature changes compared with a conventional material. With the inorganic coating material, insulation resistance of K-Hh is high even under temperature at 400°C.

This data is measured values for 450 mm. Source of the data is our in-house test result, but any value shown here is not guaranteed.

www.dpstar.com.my